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ABSTRACT: Many places on earth still suffer from a high level of atmospheric fine particulate matter (PM2.5) pollution. Formation
of a particulate pollution event or haze episode (HE) involves many factors, including meteorology, emissions, and chemistry.
Understanding the direct causes of and key drivers behind the HE is thus essential. Traditionally, this is done via chemical transport
models. However, substantial uncertainties are introduced into the model estimation when there are significant changes in the
emissions inventory due to interventions (e.g., the COVID-19 lockdown). Here we applied a Random Forest model coupled with a
Shapley additive explanation algorithm, a post hoc explanation technique, to investigate the roles of major meteorological factors,
primary emissions, and chemistry in five severe HEs that occurred before or during the COVID-19 lockdown in China. We
discovered that, in addition to the high level of primary emissions, PM2.5 in these haze episodes was largely driven by meteorological
effects (with average contributions of 30−65 μg m−3 for the five HEs), followed by chemistry (∼15−30 μg m−3). Photochemistry
was likely the major pathway of formation of nitrate, while air humidity was the predominant factor in forming sulfate. Our results
highlight that the machine learning driven by data has the potential to be a complementary tool in predicting and interpreting air
pollution.

■ INTRODUCTION
The world still carries a heavy burden of severe air pollution
events, which is often linked to the high concentration of
airborne fine particulate matter (PM2.5).

1−3 Generally, air
pollution is a function of enormous emissions and meteorol-
ogy.4,5 A severe pollution event can be formed through a rapid
increase in emission rates, atmospheric conditions that favor
the formation of secondary PM from gaseous pollutants,
meteorological stagnation (weak surface winds, shallow mixing
layer, etc.) that limits the dispersion of pollutants, and strong
transport of pollutants.1,6−9 Examining the roles of emissions
and meteorology as well as chemistry in processing haze
formation is essential before regulatory strategies to reduce air
pollution can be formulated.
Traditionally, chemical transport models (CTMs) are the

most popular tools for performing such analysis via the
simulation of scenarios and process analysis,10−13 and the
model performance heavily relies on the accuracy and up-to-

date availability of an emission inventory. Recently, a machine
learning (ML)-based meteorological normalization technique
(also called “deweathering”) has been intensively used in
atmospheric research.14−17 It is a promising alternative to
account for the effects of meteorology on air pollutants. The
model performance of ML is generally better than that of
traditional statistical analysis (e.g., linear models) and CTMs in
predicting, for example, the PM2.5 level;17,18 however, these
results are less robust in physical interpretability due to the
“black box” nature of most ML models. With the development
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of feature attribution techniques, tools that allow researchers to
explore the importance of features are gradually becoming
available.19−22 Lundberg and Lee23 proposed a SHapley
Additive exPlanation (SHAP) approach based on game theory
to quantify the global and local impacts of input features on
model predictions, which has been utilized in many fields24−28

but rarely applied to the field of atmospheric science.29,30 Such
a tool has the potential to enhance the physical interpretation
of the contributors and/or drivers of air pollution.
Unexpected severe haze episodes occurred in northern

China during the COVID-19 lockdowns in early 2020,15,31

which attracted a great deal of public attention.32 Existing
studies based on field measurements and conventional CTMs
suggested that the pandemic hazes were formed with extremely
unfavorable meteorological conditions compared to a year
before,33,34 together with enhanced secondary nitrate chem-
istry32,35 as well as increased festival emissions and residential
burning.36 Given that emission rates changed dramatically due
to the lockdowns, using CTMs with an outdated inventory to
reproduce the haze episodes can thus lead to large degrees of
uncertainty. Quantifying the major drivers behind the HEs
remains a challenge. Dai et al.37 reported that the five HEs
observed before and during the lockdown in Tianjin, China,
were formed with distinctive emissions under different
meteorological conditions; thus, these HEs provide a unique
opportunity to examine the feasibility of coupling the SHAP
approach with the ML technique in identifying key
contributors.
Here we first applied a ML-based deweathering technique to

investigate changes in emissions by decoupling meteorology
from the observed concentrations of air pollutants. The SHAP
approach was then used to quantify the roles of meteorological
variables and chemistry in processing the five HEs.

■ MATERIALS AND METHODS
Source of the Data. A six-year (2015−2020) hourly data

set, including air quality data and meteorological data, was
collected and compiled into training models. Hourly
concentrations of sulfur dioxide (SO2), nitrogen dioxide
(NO2), ozone (O3), and PM2.5 were downloaded from the
China National Environmental Monitoring Center (http://
106.37.208.233:20035/). Hourly surface meteorological varia-
bles, including air temperature (Temp), relative humidity
(RH), wind direction (WD), and wind speed (WS), recorded
at Tianjin Binhai International Airport were retrieved from the
“worldMet” R package (https://github.com/davidcarslaw/
worldmet). Hourly ERA5 data, including the boundary layer
height (BLH), total cloud cover (TCC), surface net solar
radiation (SSR), surface pressure (SP), and total precipitation
(TP), were collected from ECMWF. The 24 h temperature
difference (DeltaT) for each measured temperature was
calculated. The major secondary PM2.5 species, sulfate and
nitrate, in the studied period in 2019 and 2020 were measured
via ion chromatography (URG 9000D, Thermo) at the Air
Quality Research Supersite at Nankai University (NKUAQS,
38°59′N and 117°20′E).36 The 72 h backward air mass
trajectories (100 m AGL) were calculated for each measure-
ment using the hybrid single-particle Lagrangian integrated
trajectory model (HYSPLIT).38 Trajectories were subjected to
cluster analysis using the Euclidian distance to produce 12
clusters for subsequent analysis.
Random Forest (RF)-Based Meteorological Normal-

ization. A model trained with only regular meteorological

variables cannot reproduce the observed pollutant level well .29

Surface meteorological variables are typically used together
with a cluster of air mass trajectories and time variables, such as
Unix time (number of seconds since January 1, 1970) as a
linear trend term, Gregorian date (day of the year) as a
seasonal term, day of the week, and hour of the day.14,16,17,39

Time variables are usually considered as proxies for time-
related drivers (e.g., emission rates). Here we fed the RF model
with the aforementioned meteorological variables, the cluster
and length of air mass trajectories, an additional time variable
(lunar date15), and the total gaseous oxidant (i.e., OX = NO2 +
O3, a proxy representing atmospheric photooxidation con-
ditions16,40). Details of the RF modeling are provided in Text
S1 of the Supporting Information. The added variables greatly
improved the performance of the PM2.5 predictive model (e.g.,
r2 increased from 0.624 ± 0.003 to 0.906 ± 0.001 from 100
repeated predictions with different seeds) (Table S1).
To decouple the impacts of meteorology and chemistry on

the observed PM2.5 as much as possible, the meteorologically
normalized PM2.5 concentration at a particular time was
calculated by averaging 1000 predictions from the RF model
with meteorological variables randomly resampled from the
studied period (2015−2020).14−16 All meteorological variables
and the air mass cluster and length were replaced while the
time variables were retained during the “deweathering”
process. The deweathered PM2.5 (PM2.5,dew) at a particular
time was thus interpreted as the ambient level of emissions
(termed “PM2.5,emission”) under averaged meteorological con-
ditions (eq 1).

∑= =
=

CPM PM
1

1000 i
i2.5,emission 2.5,dew

1

1000

,pred
(1)

where Ci,pred is the RF model-predicted concentration of PM2.5
for a given meteorological condition at time i.

SHapley Additive ExPlanation (SHAP) Approach. The
average importance of the input variables and their overall
effect on RF model output can be determined via a partial
dependence plot and a global importance plot, but the
relationship between each variable and every prediction is not
clear.14 To address this, the SHAP approach,25,26 which
distributes the total gains among the players based on
coalitional game theory,41 was applied. Briefly, the difference
in model prediction with a variable (e.g., j) against the
prediction without j is attributed to the marginal contribution
of variable j. Considering the interactive effects between
variables, differences are computed for every possible variable
subset combination of each sample.23 For each predicted
sample (xi) that has K variables generating a predicted value
[f(xi)], the explanatory model f is a linear function of feature
attribution (eq 2).

∑= +
=

f x f x f x( ) Ø ( , ) Ø ( , )i
j

K

j io
1 (2)

where Øj( f, xi) is the SHAP value representing the impact of
variable j on the prediction of model f for input xi. The base
value, Øo( f, x) = E[f(x)], is the expected value of the model
output over the data set.
The SHAP value [Øj( f, x)] is the weighted average of Øj

values across all possible variable subset combinations.23,26
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∑Φ = | |! − | | − !
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f x
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( 1)
( ) ( )j

S K j
x x

(3)

where S ⊆ {0, 1}K and K is the set of all K input variables. |S| is

the number of non-zero entries in S.

If Øj( f, x) > 0 [Øj( f, x) < 0], it refers to the positive
(negative) effect of the variable j that increases (decreases) the
prediction above (below) the base value, to infer the specific
process driving the sign of the change in the pollutant
concentration for each sample.23,29

After estimating the PM2.5,emission from a built RF model for
PM2.5, we rebuilt the RF model for the meteorologically driven

Figure 1. SHAP values from the PM2.5,meteo Random Forest model. Time series of each variable’s SHAP values during the five HEs are shown in
panels a, c, e, g, and i, and data are also shown in box plots with the order of the corresponding absolute average |SHAP| values (b, d, f, h, and j).
Left and right box boundaries represent the 25th and 75th percentiles, respectively. Line and circular inside boxes represent median and mean
values, respectively. Left and right error lines represent the 1.5 * IQR (interquartile range) below the third quartile and above the first quartile,
respectively.
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PM2.5 (PM2.5,meteo, eq 4) with the aforementioned input
variables (excluding time variables) and then utilized the
SHAP value estimated with the “shap” python package
(https://github.com/slundberg/shap) to quantify each varia-
ble’s contribution to each PM2.5,meteo.

= −PM PM PM2.5,meteo 2.5,obs 2.5,emission (4)

Similarly, the impacts of factors affecting the formation of
nitrate and sulfate were also investigated. The models were
built with inputs from only meteorological variables, air mass
trajectories, and OX. Pairwise interactive effects between
features were also calculated (eqs S1−S3 and Text S2).

■ RESULTS AND DISCUSSION
The haze episodes were selected according to a 24 h moving
average PM2.5 concentration of >150 μg m−3.37 The duration
for a given episode was calculated using another criterion, an
hourly concentration threshold of 75 μg m−3, to separate clean

hours from polluted hours.42 Statistically, there were five severe
regional HEs observed in northern China in early 2020. The
statistical description and contributing sources of the five HEs
are available in ref 37. The first three HEs (HE1−HE3)
occurred before the Chinese Lunar New Year’s Eve (January
24) under “business as usual” conditions, while the last two
HEs (HE4 and HE5) overlapped with the Chinese Spring
Festival (CSF, January 25−30) and Lantern Festival (February
8), respectively. The COVID-19 lockdown in Tianjin started at
the beginning of the CSF, leading to significant changes in
emissions thereafter (Figure S1).15,36

Distinctive Drivers of the Five Haze Events. On
average, primary emissions far exceeded the recently updated
World Health Organization guidance level (i.e., 15 μg m−3 for
daily PM2.5), contributing PM2.5 concentrations of 91 ± 2, 89
± 3, 86 ± 2, 97 ± 4, and 85 ± 3 μg m−3 during HE1−HE5,
respectively. This suggests that these HEs, particularly HE1
and HE4, were largely driven by primary emissions.37 Variables

Figure 2. Main and interaction effects of major variables on PM2.5,meteo from SHAP (μg m−3). The results are combined from local explanations
based on a PM2.5,meteo Random Forest model. (a) SHAP dependence plot of RH vs its SHAP value. The dependence plots of other major variables
are presented in Figure S7. The vertical dispersion of the data in the dependence plot (a) indicates a clear interaction effect between RH and
temperature. (b) The main effect of RH shows a nearly linear increase in the effect of RH on PM2.5,meteo. (c) The interaction SHAP value between
RH and temperature shows how the effect of RH on PM2.5,meteo varies with temperature. An increase in temperature increased PM2.5,meteo
concentrations for periods with relatively low RH (≲50%) and decreased PM2.5, meteo concentrations for ≳50% RH. (d) Summary plots of the
SHAP interaction matrix values for PM2.5, meteo. The main effects are on the diagonal, and the interaction effects off the diagonal.
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associated with air mass trajectories (cluster and length) in
HE1 contributed the least among the five HEs [∼8 ± 3 μg m−3

PM2.5 (Figure 1)], suggesting that the level of regional
transport was the lowest during HE1. However, it was
relatively high in the two HEs around New Year’s Eve (∼20
± 14 μg m−3 in HE3 and ∼23 ± 15 μg m−3 in HE4), which is
in accordance with the local aerosol lidar measurement37 and
CTM modeling.43

OX ranked first among the variables in HE1 (30 ± 24 μg m−3

PM2.5). In contrast, RH was the leading meteorological factor
that enhanced the formation of hazes excluding HE1. The
SHAP value of OX peaked from noon to afternoon (Figure 1
and Figure S2) due to the increase in radiation intensity and
temperature.44 The periodic increase in the SHAP value of
SSR was greater than the increase in that of daytime OX
(Figure 1). Such diel patterns of and the time lag between
SHAP values for SSR and OX are indicative of the daytime
photochemistry. The SHAP value of RH presented consistent
diel patterns in all HEs, with a negative impact in the daytime
and the strongest positive impact at night (Figures S2). Such a
wide range of RH’s SHAP values indicates its complicated role
in contributing to a HE (e.g., aqueous-phase chemistry,
hygroscopic growth, and/or wet removal).34,45−47 The
contribution of RH was positively correlated with that of
BLH and negatively correlated with that of SSR (Figure S3),
suggesting that RH acted as aqueous-phase chemistry that
coincided mostly with dark conditions. Water vapor was less
available when the RH was below ∼50−60% like during HE1.
As opposed to the predominant role of photochemistry in
forming HE1, the enhanced PM2.5 driven by RH in the
remaining HEs was more likely related to aqueous-phase
chemistry.
Surface temperature is another important factor, accounting

for 14−31 μg m−3 PM2.5 across the five HEs. These strong
positive contributions occurred only when the temperature was
in the range of ∼0 ± 8 °C, which coincided with ≳60% RH
(Figure S6).48 A low temperature together with a high RH
would enhance the pollution. The major fractions of PM2.5
during HE2 were nitrate and sulfate.37 HE2 was largely driven
by factors associated with temperature, RH, and OX, implying
the importance of both aqueous processing and photo-
chemistry in increasing PM2.5. The air masses were relatively
short in length (Figure S4b), bringing emissions from
surroundings to the receptor site,37 thus leading to the second
and fourth increases in PM2.5 concentration during HE2
(Figure 1c). The final increase in PM2.5 before the end of HE3
was also due to strong regional transport (Figure 1e), as
confirmed by Dai et al.,37 who showed that the increment of
PM2.5 was carried by air flows from the upwind polluted areas.
It was found that the meteorological condition during the CSF
was worse than that of the previous year,33,34 which was further
verified by Xue et al.,49 who identified that unfavorable weather
was an important cause of haze pollution in northern China
during early 2020 on the basis of WRF-CMAQ modeling. In
addition to the enhanced formation of secondary aerosol
during HE4,43,45 festival-related emissions also facilitated the
formation of hazes.15,36 It was estimated that festival-related
emissions contributed ∼29 and ∼16 μg m−3 PM2.5 on the first
lunar day (January 25) in Beijing and Tianjin, respectively,15

resulting in the maximum primary emissions being recorded on
January 25 (Figure S1). Similar to the cases for HE3 and HE4,
PM2.5 in HE5 was also largely governed by RH (23 ± 15 μg
m−3). The contribution of regional transport was relatively

weak (∼11 ± 6 μg m−3). Overall, wintertime HEs were
generally driven by a combination of shallow BLH, weak
winds, low temperatures, and high RH (Figure 2 and Figure
S7). Details of the relationships between variables are
presented in Figure 2, Figure S3, and Text S3.

Mechanisms of the Formation of Nitrate and Sulfate
during the Haze Events. The formation of nitrate and
sulfate was enhanced during the lockdown periods (HE4 and
HE5),33−35,45,49,50 which would be related to chemistry-
favorable meteorological conditions. Similar to previous
studies,44,51,52 photochemistry played an important role in
forming daytime nitrate, as OX explained 10 ± 6, 6 ± 5, 4 ± 4,
6 ± 4, and 3 ± 3 μg m−3 nitrate on average during HE1−HE5,
respectively (Figure S5). A number of pieces of evidence prove
that the OX-driven daytime nitrate resulted from photo-
chemistry rather than its precursor (NOx, part of the OX
composition), particularly during the lockdown period. First,
there was no significant correlation between the time series of
OX and NO2. Second, OX was positively correlated with nitrate
(r2 = 0.22), whereas there was no discernible correlation
between NO2 and nitrate. In addition, OX explained the
majority of nitrate in the daytime but not the nighttime. The
RH-driven nitrate levels during HE1−HE5 were 2 ± 1, 6 ± 4,
6 ± 3, 5 ± 3, and 4 ± 3 μg m−3, respectively. The low
temperature and high-RH conditions were conducive to nitrate
formation because they enhanced the N2O5 heterogeneous
hydrolysis reaction and strengthened the partitioning of gas
into particles.45−47,52,53

The major pathway of formation of sulfate was different
from that of nitrate. The aqueous chemistry was likely the
dominant pathway of formation for sulfate because RH
accounted for 3 ± 2, 5 ± 4, 6 ± 2, 5 ± 3, and 4 ± 3 μg
m−3 sulfate in HE1−HE5, respectively (Figure S6). Interest-
ingly, a decrease in temperature (<0 °C) for >60% RH
promoted sulfate formation (Figure S12c). It makes sense
because a low temperature enhanced SO2 dissolution,46

resulting in a relatively high initial aerosol pH that in turn
accelerated the aqueous oxidation rate.54 Photochemistry was
less important for sulfate formation (3 ± 2, 3 ± 3, 2 ± 1, 2 ± 2,
and 2 ± 1 μg m−3 for HE1−HE5) as opposed to its dominant
contribution to nitrate. Although it is unlikely to have strong
photochemical activity in the winter, photochemistry still
played an important role in the formation of secondary
particles,44 especially for nitrate.55−57 The maximum SHAP
values of OX for nitrate and sulfate reached 25 and 18 μg m−3,
respectively (Figures S5 and S6). Here we assumed that sulfate
was totally from secondary formation; however, recent studies
found that residential coal combustion was a major source of
sulfate in northern China.58,59 Regional transport has a
stronger impact on nitrate and sulfate than the total PM2.5
mass (Figure 1 and Figures S5 and S6), as secondary particles
are more regional than local in nature. Previous studies also
demonstrated that these large-scale severe air pollution events
(herein HE3 and HE4) were associated with strong regional
transport of nitrate and sulfate.43,60

Our results are consistent with previous publica-
tions,31−35,37,44,49 further verifying the existing conclusions
and implying the feasibility of ML in interpreting haze
formation. ML-based deweathering coupled with SHAP
analysis seems to be an improvement and complementary to
current CTMs. The results should be interpreted recognizing
the limitations as detailed in Text S4.
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