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A B S T R A C T   

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic ac
tivities in 2020. Machine learning provides a reliable approach for assessing the contribution of these changes to 
air quality. This study investigates impacts of health protection measures upon air pollution and traffic emissions 
and estimates health and economic impacts arising from these changes during two national ‘lockdown’ periods in 
Oxford, UK. Air quality improvements were most marked during the first lockdown with reductions in observed 
NO2 concentrations of 38% (SD ± 24.0%) at roadside and 17% (SD ± 5.4%) at urban background locations. 
Observed changes in PM2.5, PM10 and O3 concentrations were not significant during first or second lockdown. 
Deweathering and detrending analyses revealed a 22% (SD ± 4.4%) reduction in roadside NO2 and 2% (SD ±
7.1%) at urban background with no significant changes in the second lockdown. Deweathered-detrended PM2.5 
and O3 concentration changes were not significant, but PM10 increased in the second lockdown only. City centre 
traffic volume reduced by 69% and 38% in the first and second lockdown periods. Buses and passenger cars were 
the major contributors to NO2 emissions, with relative reductions of 56% and 77% respectively during the first 
lockdown, and less pronounced changes in the second lockdown. While car and bus NO2 emissions decreased 
during both lockdown periods, the overall contribution from buses increased relative to cars in the second 
lockdown. Sustained NO2 emissions reduction consistent with the first lockdown could prevent 48 lost life-years 
among the city population, with economic benefits of up to £2.5 million. Our findings highlight the critical 
importance of decoupling emissions changes from meteorological influences to avoid overestimation of lock
down impacts and indicate targeted emissions control measures will be the most effective strategy for achieving 
air quality and public health benefits in this setting.   

1. Introduction 

In March 2020, COVID-19 disease caused by Severe Acute Respira
tory Syndrome Coronavirus 2 (SARS-CoV-2) was declared a global 
pandemic by the World Health Organization (WHO) (WHO, 2020). As of 
September 28, 2021, approximately 7.7 million confirmed COVID-19 
cases and 158664 deaths have occurred in the UK (PHE, 2021). In 
early 2020 emergency public health actions intended to contain and 

control COVID-19 were implemented successively in multiple countries 
worldwide, resulting in radical changes in social and economic activity 
and transportation patterns with major implications for urban air 
quality (Berman and Ebisu, 2020; He et al., 2020; Mahato et al., 2020; 
Sung and Monschauer, 2020). 

The UK was significantly affected by the COVID-19 pandemic during 
2020, with repeated emergency public health measures implemented at 
both national and regional levels (WHO, 2021; Davies et al., 2020). 
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Within the first phase of emergency health protection measures in En
gland (23rd March–15th June 2020), specific legislation was enacted 
(with supporting guidance) restricting people to only leave their homes 
for very limited reasons (UKHSA, 2021). These emergency ‘lockdown’ 
measures led to major reductions in demand for all forms of transport, 
both nationally and internationally (Sung and Monschauer, 2020). In 
response to an increase in COVID-19 cases a second national lockdown 
was implemented from 5th November to 2nd December 2020, including 
similar travel restrictions to the first lockdown period, but with schools 
and universities remaining open under restricted operations (PMO, 
2020). Following a subsequent resurgence in cases during the Christmas 
and New Year period a third national lockdown was implemented from 
January 5, 2021 (UKHSA, 2021). 

Air pollution is a major global public health concern, responsible for 
approximately 7 million early deaths each year worldwide (WHO, 
2016). It is estimated that exposure to poor air quality contributes up to 
6 months loss in life expectancy among those living in the UK (COMEAP, 
2010). Emerging evidence has suggested that poor air quality may be 
associated with increased COVID-19 related disease severity and mor
tality although it remains unclear to what extent these observed differ
ences are due to individual and area level confounding factors 
(Benmarhnia, 2020; Fattorini and Regoli, 2020; Konstantinoudis et al., 
2021; Magazzino et al., 2020; Ogen, 2020; Sasidharan et al., 2020; Wu 
et al., 2020). 

Several studies of the early pandemic phase reported substantial 
changes in anthropogenic activities and associated short-term air quality 
improvements in multiple cities worldwide, including Delhi, Barcelona, 
New York, London and Wuhan (Mahato et al., 2020; Baldasano, 2020; 
Zangari et al., 2020; Jephcote et al., 2020; Lian et al., 2020). However, 
more recent analyses undertaken by Shi et al. (2021), applying a novel 
machine learning deweathering technique, indicated smaller than ex
pected changes in the concentrations of major air pollutants such as 
nitrogen dioxide (NO2) and particulate matter (PM) in major cities 
around the world. The study clearly highlighted the impact of meteo
rological variations which can mask the impact of changes in emissions 
upon observed air quality concentrations and highlighted the need for 
sophisticated analyses to quantify lockdown impacts. 

In the UK, several studies have been performed to understand 
regional and national changes in ambient air quality during COVID-19 
lockdown periods in 2020 (Higham et al., 2020; Jephcote et al., 2020; 
Shi et al., 2021; Wyche et al., 2020). However, most existing research 
regarding UK lockdown impacts has focused upon short-term air quality 
changes in major conurbations, with few authors assessing impacts in 
the towns and cities in which approximately 45% of the UK population 
live (ONS, 2020). Further, only a limited number of studies have inte
grated localised traffic information to identify impacts of changing 
travel patterns upon vehicle fleet characteristics, real-world emissions, 
and air pollutant concentrations, thereby generating relevant health 
impact scenarios (Baldasano, J.M., 2020; Jephcote et al., 2020; Vega 
et al., 2021). 

To address this knowledge gap, the present study evaluates impacts 
of two national COVID-19 lockdown periods upon ambient air pollutant 
concentrations, traffic volume and vehicle emissions in Oxford, UK, 
applying a deweathering technique (Shi et al., 2021). In addition, we 
estimate health and economic benefits which could be achieved if a 
lockdown scenario were sustained; thereby generating insights into the 
most effective air pollution mitigation measures in this context. 

2. Data and methods 

2.1. The study area 

Oxford is a compact historic university city 68 m above sea level with 
a temperate climate (mean annual temperature 10.3 ◦C, mean annual 
cumulative rainfall 708 mm) and area approx. 46 km2 (OP, 2021). The 
diverse population of approximately 152000 residents is recognised to 

be highly transient, including approximately 34000 students enrolled at 
two universities (ONS, 2020). It is the main employment site serving the 
wider Oxfordshire region with an estimated 46000 people typically 
commuting into the city for work on a daily basis prior to the COVID-19 
pandemic (OCC, 2018). As with many UK cities Oxford has recognised 
air quality challenges, with transport identified as the main source of 
NO2 emissions (Ricardo, 2020). Oxford City Council declared the whole 
city an Air Quality Management Area (AQMA) in 2010 and initiated an 
Air Quality Action Plan (AQAP) in 2013. A key AQAP measure was the 
implementation of a bus-based central Low Emission Zone (LEZ) from 
2014 requiring all buses operating in the LEZ area to meet Euro V 
emissions standards. More recently this was updated to require a mini
mum Euro VI standard by December 2021 (OCC, 2020). Data from the 
two regulatory air quality monitoring locations in Oxford indicated 
overall mean NO2 concentrations reduced by 29% during the period 
2009–2019 (Abreu, 2020). However, in 2019 annual mean NO2 con
centrations remained above legal limits in six central locations including 
the Oxford City Roadside Automatic Urban and Rural Network (AURN) 
site (Abreu, 2020). More recently, the City and County Councils jointly 
committed to future introduction of a central Zero Emissions Zone (ZEZ) 
(OCC, 2021), and adopted a local annual mean NO2 target of 30 μg m− 3 

to be achieved by 2025 (Abreu, 2021b). However, the available epide
miological evidence suggests that no threshold for effects of NO2 expo
sure exists, with evidence of adverse disease outcomes associated with 
exposure to annual mean NO2 concentrations as low as 5 μg m− 3 

(COMEAP, 2018). 

2.2. Data sources 

2.2.1. Air pollutant and meteorological data 
Hourly gaseous and particulate concentrations specifically NO2, NOx, 

Ozone (O3), PM2.5 (PM with aerodynamic diameter less than 2.5 μm) 
and PM10 (PM with aerodynamic diameter less than 10 μm) data were 
obtained for 11 years (2010–2020) to provide the long-term air quality 
trends for Oxford City. However, to evaluate the lockdown benefits and 
understand the changes in air quality during 2020, we used the most 
recent five years (2016–2020) of hourly measured data for key gaseous 
and particulate concentrations. Air pollutant data were obtained from 
the UK Department for Environment, Food and Rural Affairs (Defra) 
Automatic Urban and Rural Network (AURN) (Defra, 2021) sites in 
Oxford City; an urban background site at St Ebbe’s located within 
air-conditioned housing within the grounds of St Ebbe’s School, and 
Oxford Centre Roadside located at St Aldate’s in the city centre. It should 
be noted that the archived roadside location does not capture PM and O3 
data and therefore data for these pollutants were available at the urban 
background site only. Hourly meteorological variables (i.e., air tem
perature, wind speed, wind direction, relative humidity, atmospheric 
pressure, total cloud cover, planetary boundary layer height, surface net 
solar radiation) were obtained for Oxford from the ERA5 reanalysis 
dataset via the Copernicus Climate Change Service (C3S) Climate Data 
Store (CDS) (Hersbach et al., 2018) for the time period 2016–2020. 

2.2.2. HYSPLIT model data sources 
The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYS

PLIT) model (Stein et al., 2015) was used to calculate 72-h back tra
jectories (defined as categorical variables) arriving at an altitude of 100 
m for the study area following Shi et al. (2021). Meteorological data 
from National Centers for Environmental Prediction (NCEP) and the 
National Center for Atmospheric Research (NCAR) reanalysis dataset 
were used to run the HYSPLIT model. Back trajectory air masses were 
clustered using the ‘trajCluster’ function within the “openair” package in 
R (Carslaw and Ropkins, 2012). Clusters were determined as those best 
representing the dataset when using the ‘Euclid’ method within the 
‘trajCluster’ function. This method uses the Euclidian distance between 
each pair of trajectories to generate the distance matrix which de
termines similarity (or dissimilarity) between back trajectories used as 
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the basis for clustering (Wilks, 2011). 

2.2.3. Traffic and vehicle emissions data 
Traffic data for a central Oxford location was obtained from a 

Vivacity Labs (VL) roadside motion detection sensor managed by 
Oxfordshire County Council (Vivacity, 2021a). VL sensors obtain cam
era images and apply motion and shape detection algorithms to detect 
and classify transport modes and urban movement including classified 
counts, vehicle path, journey time and speed. Daily vehicle counts (from 
January 1, 2020) categorised by vehicle type (car, motorbike, bus, Light 
Goods Vehicle (LGV), Ordinary Goods Vehicle (OGV)) were extracted 
for the VL sensor located at the main arterial traffic route at Oxford High 
Street, approximately 200 m from the St Aldate’s roadside AURN site. 
Data for the Oxford City bus fleet engine types (2020) was provided 
directly by city transport operators (e.g., Oxford Bus Company, Stage
coach, and Thames Travel). 

2.2.4. Demographic, health and economic data 
Demographic data for health impact assessment was obtained from 

the Office for National Statistics (ONS) including mid-2019 population 
estimates (ONS, 2020) population size (152000), and district (city) level 
annual mortality rate (ONS, 2019). Air quality data for city-wide health 
impact assessment at baseline was obtained from the network of 71 
diffusion tubes maintained by Oxford City Council, with annual mean 
NO2 concentrations (2019) extracted from the Air Quality Annual Status 
Report 2019 (Abreu, 2020). 

2.3. Methods 

2.3.1. Estimation of lockdown impacts using deweathering technique 
Machine learning techniques can be applied to quantify the contri

butions of emissions and meteorological factors to observed short-term 
changes in air quality during the COVID-19 lockdown periods. To 
quantify these changes in Oxford City, we apply a random forest (RF) 
algorithm-based weather normalization technique, following Shi et al. 
(2021) and Grange and Carslaw (2019). This approach enables calcu
lation of ‘deweathered’ (weather-normalized) concentrations, reflecting 
air pollutant concentrations under average meteorological conditions, 
thereby quantifying the contribution of emissions changes during the 
study period. The RF model can well reproduce air pollutant concen
trations with high model performance and has been widely used in 
several studies (Dai et al., 2021; Grange et al., 2018; Shi et al., 2021). 
The ‘rmweather’ package in the R programming tool was used for RF 
modelling and weather normalization in this study (Grange and Car
slaw, 2019). Explanatory variables in the model include meteorological 
variables (air temperature, wind-speed, wind-direction, relative hu
midity, atmospheric pressure, total cloud cover, planetary boundary 
layer height, and surface net solar radiation), air mass clusters, and time 
variables (Unix-time, hour of the day, weekday and day of the year). 
Deweathered air pollutant concentrations at hourly intervals were 
calculated by averaging 1000 predictions (Grange et al., 2018) from the 
meteorological variables (excluding all time variables), resampled at 
random from the entire dataset during the study period. We considered 
it necessary to retain the weekly and seasonal cycles as 
weather-normalized concentrations should be consistent with emission 
cycles. 

Changes in deweathered concentrations before and after lockdown 
began are on their own insufficient to identify the lockdown impact, 
because of possible emission changes in the business-as-usual (BAU) 
scenario. Thus, it is necessary to subtract the deweathered change in the 
BAU scenario (e.g., 2016–2019) from that in 2020, to obtain the 
detrended change that is attributable to lockdown-associated emissions 
changes only. We therefore utilized hourly pollutant concentrations data 
for the five-year period 2016–2020 to estimate deweathered and 
detrended concentrations of air pollutants during 2020, in comparison 
to 2016–2019. Further detailed information of the weather 

normalization technique and model utilized in this study can be found in 
Shi et al. (2021). 

2.3.2. Calculation of percentage change in air pollutant concentrations 
The percentage change (P) in the observed, deweathered concen

trations of air pollutants was derived using equation (1), following Shi 
et al. (2021). 

P=
(Ci − C)

C
× 100 (1)  

where Ci is the mean concentration of the air pollutant (observed or 
deweathered) on the ith day (8th to 35th day after lockdown start date). 
C is the mean concentration of the air pollutant (observed or deweath
ered) in pre-lockdown period (2nd and 3rd weeks before lockdown start 
date). We utilized the past five years (2016–2020) data to calculate 
percentage changes in observed and deweathered concentrations in 
2020, compared to 2016–2019 (Table 1). 

In addition, for each air pollutant we calculated the ‘detrended’ 
percentage change (P* = P2020 - P2016–2019) (Table 1) through Monte 
Carlo simulations (n = 10000) in RStudio (Allaire, 2012), using normal 
distribution of percentage changes in deweathered pollutant concen
trations. Here, P2020 and P2016–2019 denote the percentage changes in 
deweathered pollutant concentrations in 2020 and the mean concen
trations for 2016–2019, respectively. 

2.3.3. Estimation of lockdown impacts on the on-road emissions by vehicle 
types 

An emissions estimation was conducted to explore the impacts of the 
lockdown periods upon vehicle exhaust emissions by vehicle types. 
Daily total exhaust emissions of vehicle type p are estimated by the 
following equation: 

Ep = EFp × ACp × DTp (2)  

where Ep(g), EFp(g /km), ACp, and DTp(km) are daily total exhaust 
emission of vehicle type p, the exhaust emission factor of vehicle type p, 
the total daily activity of vehicle type p, i.e. the number of vehicles of 
type p that travel on a certain day in the studied location, and distance 
travelled by vehicle type p, respectively. Here, p represents either car, 
OGV, HGV, motorbike, or bus. The required activity data were obtained 
from the Vivacity sensor run by Oxfordshire County Council (Vivacity, 
2021a). The emission factor of vehicle type p is estimated by the 
following equation: 

EFp =

∑6
i=1αiEFp,i
∑6

i=1αi
(3) 

where EFp,i(g /km), and αi are the emission factor of vehicle type p 
with the emission standard i, and the contribution of vehicle type p with 
emission standard i to the total population of vehicle type p. The emis
sion standard i accounts for Euro 1/I to Euro 6/VI. Euro 1–6 refers to the 
legislation for light-duty vehicles and Euro I-VI refers to the legislation 
for heavy-duty vehicles. αi is determined through the fleet composition 
of each area. The fleet composition of Oxford City was previously re
ported by Hitchcock et al. (2017) and updated with local bus fleet data 
provided by local operators. The fleet composition is based on fuel types 
(diesel or petrol) and was estimated using the method described by Osei 
et al. (2021). Real-world emission factors for different vehicle types with 
different emission standards (EFp,i) were obtained from a dataset 
measured by the Emission Detecting and Reporting (EDAR) system 
during five UK city campaigns. EDAR is a vehicle remote sensing system 
which is deployed adjacent to roads and measures the real-world EFs of 
moving vehicles (Ghaffarpasand et al., 2020; Ropkins et al., 2017). The 
EDAR campaigns occurred from 2016 to 2018 and captured vehicles 
with different emission standards up to the present-day Euro 6/VI 
standards. It was assumed that the same distance was travelled for all 
observed vehicles to assess the contribution of different vehicle classes 
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to local exhaust emissions. This assumption is appropriate for the esti
mation of emissions at a single roadside location, such as that used in 
this study, where the roadside concentrations will be dominated by the 
local traffic sources. It is assumed that all observed vehicles travel 
approximately the same distance within the area local to the measure
ment, i.e., all vehicles travel the same distance down the same road 
where the traffic monitoring is located. 

2.3.4. Estimation of health and economic impacts due to changes in air 
quality 

A health impact estimation was performed to assess reductions in 
attributable mortality, life years saved and associated economic benefits 
attributable to NO2 exposure reduction for a specified lockdown sce
nario. For this purpose, dwellings in the city were classified into three 
exposure zones: Zone 1: within 25 m of centre lines of main roads (near 
roadside); Zone 2: 26–50 m from centre lines of major roads (far road
side); Zone 3: >50 m from centre lines of major roads (urban back
ground). Annual mean NO2 concentrations measured at multiple (n =
71) diffusion tube sites and AURN sites (n = 3) in 2019 were used to 
calculate a mean annual NO2 concentration representative of each 
respective exposure zone. Due to a limited number of diffusion tube sites 
in Zone 2, the Zone 2 value was calculated by applying a 10 μg m− 3 

dispersion/dilution factor to the Zone 1 mean value, based on the 
sample sites where data were available. The dispersion/dilution factor 
was obtained from locations in the city where both a roadside (Zone 1) 
and a near roadside (Zone 2) diffusion tube monitoring site were 
available in close proximity and therefore used to estimate the likely 
general relationship between NO2 concentrations in Zone 1 compared 
with Zone 2. The estimated 2019 annual mean NO2 concentrations in 
each exposure zone were Zone 1: 31.7 μg m− 3; Zone 2: 21.7 μg m− 3 and 

Zone 3: 20 μg m− 3, respectively. Using GIS mapping (‘Select by location’ 
tool in ArcMap 10.6.1) a total of 61711 addressable residential prop
erties were identified in the National Land and Property Gazetteer 
(NLPG) layer and multiplied by the mean city household size of 2.47 
(Geoplace, 2014) to estimate the population size within each respective 
zone: Zone 1: 11961 (8%); Zone 2: 14072 (9%); Zone 3: 126467 (83%); 
total population 152000. All-cause mortality attributable to NO2 expo
sure among those adults aged 30 years or over residing within each 
exposure zone was estimated using a standard concentration-response 
function of 1.0095 (95% CI 1.006,1.013) per 10 μg m− 3 increase in 
annual mean NO2 concentration (COMEAP, 2018), applied to 2019 city 
population mortality rates (0.00857) (ONS, 2020). 

To estimate the economic impacts arising from air pollution expo
sure, the recommended approach in the UK converts attributable mor
tality into life years lost (COMEAP, 2012). A 10.67 multiplier was used 
to convert each death in Oxford into total life years lost (PHE, 2014, 
Table 4, Column 3). So, for each premature death caused by air pollution 
in the Oxford area that person would have been expected to live for 
10.67 additional years. Each life year lost was costed by applying a 
standard £27630 Value of Life Years lost (VOLY), updated to 2019 prices 
using HM Treasury GDP deflators, giving a value of £38527 per life year 
lost (Chilton et al., 2004; Treasury, 2021). 

3. Results 

3.1. Observed air quality changes in Oxford during 2020 

To understand the effect of lockdown measures on air quality, it is 
important to first understand the air quality patterns and trends of 
recent previous years. The temporal trends of monthly mean 

Fig. 1. Time series of monthly mean ambient air pollutant concentrations in Oxford City from 2010 to 2020. The shaded lines represent the smooth fit line at the 95% 
confidence interval. 
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concentrations of key ambient air pollutant (NO2, NOx, PM2.5, PM10 and 
O3) in Oxford city over the previous decade are shown in Fig. 1. Focusing 
upon the previous five years (2016–2020), a clear change in ambient air 
pollutant concentrations can be observed with reductions in roadside 
NO2 and NOx, and background PM10 and PM2.5 concentrations (Fig. 1). 
To assess the changes in Oxford ambient air quality during 2020 in 
comparison to previous years (2016–2019), the mean monthly concen
trations of NO2, NOx, PM2.5, PM10 and O3 at the urban background site 
and NO2 and NOx at the roadside site are presented in Fig. 2. All monthly 
mean pollutant concentrations were of lower magnitude during January 
and February 2020 (pre-lockdown) in comparison to monthly mean 
concentrations over the previous four-year period (2016–2019). During 
the first national lockdown period (23rd March–15th June 2020) 

observed monthly mean concentrations of NO2 and NOx reduced by 
about 47% and 63% (at roadside) and 36% and 40% (at urban back
ground) respectively in comparison to the monthly means over the 
previous four-year period (2016–2019) (Fig. 2 and S1) – a greater dif
ference than that observed during the pre-lockdown period in early 
2020. Less marked changes in NO2 and NOx concentrations were 
observed at both roadside (approx. 26% and 31%, respectively) and 
urban background (approx. 21% and +1%, respectively) locations 
during the second national lockdown period (5th November–1st 
December 2020), relative to the mean of the previous four-year period 
(2016–2019). The annual cycle for PM2.5 and PM10 concentrations 
during 2020 was not observed to change relative to previous years. 
Given the below mean pollutant concentrations during the pre- 

Fig. 2. Mean monthly annual cycle for key air pollutants (NO2, NOx, PM2.5, PM10 and O3) at Oxford a) roadside (St Aldate’s) and b) urban background site (St Ebbe’s) 
during 2020, compared to four-year mean (2016–2019). The shaded areas represent the 95% confidence interval. 
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lockdown period and influence of seasonal trends, it is evident that 
direct comparisons of observed pollutant concentrations can lead to 
inaccurate conclusions regarding the impact of lockdown measures. It is 
therefore essential to uncouple observed values from meteorological and 
seasonal influences to understand the actual changes associated with 
COVID-19 restrictions. 

In contrast to changes in mean monthly NO2, NOx and PM concen
trations, O3 (a secondary pollutant) concentrations measured at the 
urban background site were higher in 2020 as compared to the previous 
four-year mean (2016–2019) (Fig. 2 and S1). The increased O3 

concentrations during the early part of the year most likely reflect 
synoptic weather during 2020. Overall changes in observed monthly 
mean gases and particulate pollutants concentrations were more pro
nounced during the first as compared to the second lockdown period, 
where a seasonal variation in pollutant concentrations was also evident. 

This section presents the analysis of hourly diurnal changes in 
pollutant (NO2, NOx, PM2.5, PM10 and O3) concentrations during 2020 in 
comparison to the previous four years (2016–2019). A clear change in 
NO2 and NOx hourly patterns was seen at the roadside location in 2020, 
compared to the four-year mean (2016–2019), whereas similar hourly 

Fig. 3. Observed (light lines) and deweathered (dark lines) daily pollutant concentrations at A1) Roadside and A2) Urban background locations in 2020 versus 2018. 
Light yellow shades show the UK national lockdown periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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patterns with relatively lower values were observed in NO2, NOx, PM2.5 
and PM10 at the urban background site (see Supplementary Figure S2). 
The roadside location showed significant lower magnitude concentra
tions of NO2 and NOx in 2020 compared to 2016–2019, suggesting 
changes in diurnal traffic volume and the renewal of the vehicular fleet. 
In contrast to NO2, NOx and PM, increased concentrations of O3 were 
observed at the urban background site with similar hourly patterns for 
both COVID-19 year (2020) and previous years (2016–2019). 

These results need to be considered in the context of weather effects 
because meteorology can moderate the link between emissions and 
pollution concentrations and thus the real observed air quality levels. To 
this end, we proceed to apply machine learning deweathering technique 
to estimate lockdown related air quality impacts which may be attrib
uted to actual changes in pollutant emissions. 

3.2. Evaluating changes in pollutant concentrations due to national 
lockdowns using deweathering machine learning technique 

Fig. 3 shows the time series of daily observed and deweathered 
concentrations of air pollutants in 2020 versus 2018 (as an example 
year) in Oxford City. For readability of the figure, we only plotted data in 
2018 as reference levels. Clear changes can be seen in observed and 
deweathered NO2 concentrations at the roadside location during the 
first national lockdown, while no significant changes were observed 
during second lockdown and smaller changes were noted at the urban 
background location. Deweathered concentrations showed the similar 
pattern to the observed values but with different magnitude. Smaller 
changes (distinct from 2018) were identified in both observed and 
deweathered PM concentrations at urban background locations after 

Fig. 4. Box plots of percentage change in deweathered concentrations of air pollutants in 2020 versus 2016–2019. These box plots include median along with upper 
and lower quartiles, and the yellow marker shows the mean value. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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both first and second lockdowns in 2020. In contrast, similar increases in 
both observed and deweathered O3 concentrations were noted at the 
urban background location during the first lockdown, in comparison to 
2018. 

We used deweathered and detrended data to evaluate the impact of 
national lockdown measures on Oxford’s ambient air quality in 2020 
versus 2016–2019 by decoupling the effect of emission changes from 
meteorology. We found that deweathered NO2 concentrations in 
2016–2019 were reduced significantly during the first lockdown period 
at both roadside (P2016–2019 = − 6.0 ± 1.5%) and urban background 
(P2016–2019 = − 16.0 ± 2.3%) locations, but always a lesser reduction 
than the equivalent lockdown calendar period in 2020 (P2020 = − 28.2 ±
4.1% and P2020 = − 18.0 ± 6.6% respectively) (Fig. 4 and Table 1). 
However, during the second lockdown period, a similar increase (within 
a range of uncertainty) in deweathered NO2 concentrations was noted in 
2016–2019 and 2020 at both roadside (P2016–2019 = 2.6 ± 1.3% and 
P2020 = 2.7 ± 8.0% respectively) and urban background (P2016–2019 =

5.4 ± 1.3% and P2020 = 6.7 ± 8.3% respectively) (Fig. 4 and Table 1). 
Furthermore, it is noted that the deweathered percentage change in 
urban NO2 in Oxford during the first lockdown (− 18.0 ± 6.6%), was 
comparable to that reported in London (− 18.2 ± 6.0%) by Shi et al. 
(2021). Unfavourable meteorological effects during the first lockdown 
contributed to approximately +1.4% and +111.2% in observed per
centage changes in urban NO2 and PM2.5 before and after lockdown 
began in Oxford, respectively, which are slightly smaller than +8.1% in 
urban NO2 and +144.3% in urban PM2.5 identified in London (Shi et al., 
2021). In contrast to NO2, PM changes in deweathered concentrations in 
2020 were much less marked in comparison to 2016–2019 reflecting the 
more complex interactions of PM sources (emission and secondary for
mation) and transport, although deweathered PM10 concentration 
increased during the second lockdown period (P2016–2019 = 1.3 ± 0.7% 
and P2020 = 6.3 ± 0.5% respectively) (Fig. 4 and Table 1). 

The detrended results also showed a significant reduction in NO2 
concentrations during the first lockdown period at both roadside (P* =
− 22.2 ± 4.4%) and urban background (P* = − 2.0 ± 7.1%) locations, 
but with a smaller reduction than the corresponding deweathered con
centrations (Table 1). Moreover, increases in deweathered O3 concen
trations at the urban background location were of the same magnitude in 
2016–2019 and 2020 during both first (P2016–2019 = 5.3 ± 2.5% and 
P2020 = 4.2 ± 1.0% respectively) and second lockdown periods 
(P2016–2019 = 1.2 ± 0.5% and P2020 = 1.7 ± 2.2% respectively), where 
the detrended percentage changes were always smaller than the corre
sponding deweathered changes (Fig. 4 and Table 1). There were no 
significant changes in detrended NO2 concentrations at either roadside 
or urban background locations in the second lockdown period and 
changes in detrended PM2.5 and O3 concentrations at the background 
site were not significant in either lockdown period. However, a signifi
cant increase in detrended PM10 concentration was identified at urban 

background location in the second lockdown period only (P* = +5.0 ±
0.9%). 

3.3. Lockdown impacts upon vehicle activity and estimation of on-road 
emissions changes by vehicle class 

Daily traffic count data by vehicle class for Oxford High Street are 
presented in Table S1 and Fig. 5. Pre-pandemic mean daily traffic counts 
were 7709 vehicles per day (range 1514–8705), of which approximately 
61% were passenger cars. A rapid reduction in daily volumes of all 
vehicle types was observed during first two weeks of March 2020 
following escalation of the England Chief Medical Officer (CMO) advice 
regarding risk to public health on 12th March 2020 (PMO, 2020) with an 
overall traffic volume reduction of 69% and 38% in the first and second 
lockdown periods respectively. It is notable that the percentage reduc
tion in the volume of cars and buses was much higher in the first 
compared to the second lockdown period (Fig. 5 and Table S1). 

The relative magnitude of changes in traffic volume is broadly 
consistent with the large change in (deweathered, detrended) roadside 
NO2 observed during the first lockdown and the smaller (statistically not 
significant) changes in (deweathered, detrended) roadside NO2 during 
lockdown 2 (Fig. 5). However, these traffic trends do not reveal which 
types of vehicles contributed the most to pollutant concentrations dur
ing the respective lockdown periods. To this end, we calculate the 
estimated on-road emissions at the studied location by vehicle class 
during the lockdown periods. 

The relative NO2 emission of different vehicle classes in the study 
location are illustrated in Fig. 6. It should be noted that the emission of 
vehicles has been normalized according to the mean emission 
throughout pre-lockdown status. Substantial drops are observed in the 
NO2 emission of buses and cars which reduced by 56% and 77% 
respectively during the first lockdown. Although there are some re
ductions in the relative NO2 emissions of LGVs and OGVs these are not 
significant when compared to those arising from cars and buses. These 
reductions are mainly attributed to the lockdown measures and reduc
tion of human activities, including travel for work and leisure purposes 
for that period. The second lockdown had lesser effects upon travel 
demand and therefore the NO2 emission of buses and cars, which 
reduced by 5% and 37% respectively. Meanwhile, the impact of the 
second lockdown period upon the NO2 emission of LGVs and OGVs was 
not significant. The contribution of different vehicle classes to the local 
fleet NO2 emissions is illustrated in Fig. 7. The dominant contribution of 
buses to overall emissions is attributed to the high volume of bus 
transport at the studied area, shown in Figs. 5 and 7 and higher NO2 
emissions from the heavy-duty engines used in buses and OGVs 
compared to light-duty vehicles. High NO2 emission of heavy diesel 
engines have been evidenced by many previous investigators, see for 
example (Ghaffarpasand et al., 2021; Rosero et al., 2021). 

Table 1 
Percentage changes in observed, deweathered and detrended concentrations of ambient air pollutants during national lockdown periods in 2020 versus 2016–2019 
(roadside and urban background AURN sites), where uncertainties are at 1 standard deviation (±1σ) of the mean.  

Pollutants 

P2020 

Lockdown 1 

P2020 

Lockdown 2 

P2016–2019 P* P2016–2019 P* 

NO2 (Obs)-Roadside − 38.1 ± 24.0 20.2 ± 55.0 − 58.2 ± 60.1 17.6 ± 50.2 12.5 ± 21.0 5.7 ± 54.5 
NO2 (DeW) -Roadside − 28.2 ± 4.1 − 6.0 ± 1.5 − 22.2 ± 4.4 2.7 ± 8.0 2.6 ± 1.3 0.2 ± 8.1 
NO2 (Obs)-Urban background − 16.5 ± 5.4 7.0 ± 81.3 − 22.6 ± 81.9 89.9 ± 94.1 32.1 ± 28.7 57.4 ± 99.0 
NO2 (DeW)-Urban background − 18.0 ± 6.6 − 16.0 ± 2.3 − 2.0 ± 7.1 6.7 ± 8.3 5.4 ± 1.3 1.4 ± 8.4 
O3 (Obs)-Urban background 11.0 ± 19.0 13.4 ± 26.5 − 3.1 ± 32.7 − 29.6 ± 48.5 − 4.0 ± 3.3 − 26.5 ± 49.1 
O3 (DeW)-Urban background 4.2 ± 1.0 5.3 ± 2.5 − 1.1 ± 2.7 1.7 ± 2.2 1.2 ± 0.5 0.5 ± 2.3 
PM2.5 (Obs)-Urban background 98.3 ± 105.3 46.2 ± 105.3 52.5 ± 146.8 101.7 ± 140.7 24.6 ± 36.0 76.2 ± 143.6 
PM2.5 (DeW)-Urban background − 12.9 ± 10.6 − 15.48 ± 7.5 2.7 ± 10.7 13.5 ± 1.6 4.5 ± 2.1 9.1 ± 16.0 
PM10 (Obs)-Urban background 83.1 ± 85.0 14.0 ± 16.1 69.1 ± 86.6 54.8 ± 88.6 3.0 ± 18.0 52.0 ± 19.0 
PM10 (DeW)-Urban background − 9.1 ± 9.5 − 12.5 ± 7.8 3.2 ± 12.2 6.3 ± 0.5 1.3 ± 0.7 5.0 ± 0.9 

Dew- Deweathered, Obs- Observed, P- Percentage change and P* - Detrended percentage change (P* = P2020 - P2016–2019), calculated using Monte Carlo simulations (n 
= 10,000) based on the normal distribution of P2020 and P2016–2019. 
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Fig. 5. Time-series of daily traffic count by vehicle type at Oxford Roadside (Oxford High Street) (1st Jan–31st Dec 2020), where OGV = Ordinary Goods Vehicles 
(includes both Class 1 and Class 2) and LGV = Light Goods Vehicles. 

Fig. 6. Relative NO2 emission by vehicle type at the studied location in 2020.  
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Overall, a significant drop in traffic volume did not translate into an 
equivalent large reduction in (deweathered, detrended) NO2 concen
trations, suggesting emissions control policies would be more effective 
by targeting the high emitters (e.g., most polluting vehicles) rather than 
overall reductions in overall passenger vehicle traffic volume. 

3.4. Estimation of health impacts and economic benefits associated with 
air quality changes attributed to COVID-19 lockdown scenarios 

Having established the actual changes in air quality associated with 
emissions changes we consider the potential health benefits arising if 
this scenario were maintained across the city. We focus only on the 
reduction in NO2 concentrations in the first lockdown period due to the 
significant decrease in deweathered and detrended NO2 roadside con
centrations as described previously. We consider health and economic 
implications for city residents by exposure zone status if equivalent NO2 
reductions were to be sustained on an annual basis (Table 2). Accord
ingly, we would predict 5 deaths each year could be prevented at a city 
level, reflecting 48 lost life years averted at a total economic benefit of 
£1.83 million (£1.16–2.52 million) compared to 2019 baseline. The 
greatest relative health and economic gains achieved by this scenario 
would be experienced by those living at near roadside locations, with 7 

lost life years averted at additional economic benefit £0.28 million, 
compared to far roadside (4 life years, £0.12 million) or urban back
ground (5 life years, £0.17 million) sub-populations. 

It is important to note that here we are modelling lives saved as a 
result of reduction in a single pollutant only (NO2) and we do not 
consider impacts of PM or O3 concentration changes. We also assume a 
linear mortality response for the reduction in NO2 (with no minimum 
safe threshold for human health) and a consistent level of reduction over 
the complete lockdown period. Finally, it is beyond scope of this current 
analysis to consider the wider public health impacts of restricted eco
nomic activities or lockdown measures. 

4. Discussion 

We have examined impacts of the COVID-19 pandemic and associ
ated emergency public health lockdown interventions upon ambient air 
quality and traffic volume in Oxford during 2020. Our analyses reveal 
the importance of deweathering and de-trending approaches for un
derstanding the real-world air quality impacts of such measures – 
notably reductions in vehicle movements and emissions – to inform 
future air urban quality management strategies in small and medium- 
sized UK cities. 

Fig. 7. Contribution of different vehicle types to the NO2 fleet emissions at the studied area in 2020.  
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Analyses commissioned by Defra indicated relatively high (59%) 
reductions in observed roadside NO2 concentrations in Oxford during 
the first lockdown, ranking as the third highest city-level reduction 
(below Glasgow and Warrington) (Carslaw, 2020). However, this pre
vious investigation was undertaken for 23rd March to 3rd May 2020 
only and did not account for seasonal trends. The Oxford City Council 
2020 Annual Air Quality Annual Status Report identified a 29% reduc
tion in observed NO2 concentrations during 2020 compared to the 
previous 10 years (2009–2019) (Abreu, 2021a); a finding broadly 
consistent with our own observed results. However, ours is the first 
study to apply a deweathering approach in this context and our results 
indicate that actual lockdown related impacts were much less marked 
than those reported previously with observed NO2 reductions in the first 
lockdown period of 38% and 17% at roadside and urban background 
sites corresponding to deweathered and detrended values of 22% (SD ±
4.4%) and 2% (SD ± 7.1%) respectively. Notably, pre-pandemic 
observed pollutant concentrations for NO2, PM2.5, PM10 and O3 were 
already below the previous four-year mean concentrations in spring 
2020, likely to be due to prevailing meteorological conditions and (or) 
impacts of recent policy interventions (i.e., LEZ related Euro VI bus 
upgrades). During the second lockdown period, deweathering and 
detrending analyses revealed no significant change in NO2 at roadside 
(0.2 ± 8.1%) suggesting that an overall 38% reduction in traffic flow 
does not achieve NO2 exposure reductions at this location. Observed 
particulate concentrations exhibited considerable variability, however 
we identified a significant increase in PM10 during the second lockdown 
(5.0 ± 0.9%). Our results also suggest that increases in O3 were not as 
pronounced in this setting as those originally reported in other UK cities 
(AQER, 2020). 

Analyses of dynamic traffic data for the lockdown periods broadly 
reflect national trends of COVID-19 restrictions upon vehicle move
ments (Vivacity, 2021b) and are consistent with the 35% reduction in 
vehicle volume from 23rd March–31st December 2020 reported by 
Oxford City Council, and operator reported changes in bus service levels. 
We identify buses and cars as the dominant source of NO2 emissions, 
with OGVs (including HGVs) having a relatively minor contribution, as 
reported previously (Abreu, 2021a; Ricardo, 2020). While the emissions 
of cars and buses decreased during both lockdown periods, buses 
increased their overall contribution to local emissions, replacing the 
overall contribution of cars in the second lockdown (Ricardo, 2020). 

These patterns may reflect the dominance of the educational sectors in 
the city, with university, college and campus operations highly 
restricted during the initial pandemic phase, but remaining largely 
operational during the second lockdown period. Decreases in activity 
levels from other combustion sources, such as power plants and industry 
may have contributed to the decline in NO2 emissions, but the relatively 
small and non-significant (deweathered, detrended) decline in NO2 
concentrations at the urban background site suggests these were not 
substantial for this location. In this study we did not consider the in
fluences of driving behaviour such as mean speeds or acceleration events 
upon NO2 emissions (Leach et al., 2020); research which considers these 
factors could provide further relevant insights at the studied location. 

Identifying the impacts of lockdown measures upon PM2.5 and PM10 
concentrations is more complex due to the wider range of emissions 
sources, contribution of secondary formation and influences of regional, 
national and international long-range sources. It has been estimated 
previously that domestic combustion contributes to 66% and 48% of 
local PM2.5 and PM10 emissions in the city and domestic emissions may 
have increased during lockdown periods due to changes in time activity 
patterns. However, the increase in PM10 during the second lockdown 
may also be associated with resumption of highway works and con
struction activities in the city centre. The relatively small change in 
observed O3 concentration for urban background is consistent with 
recent model simulations which predict substantive changes in O3 
concentrations within city centers, due to reductions in NO titration, but 
much smaller changes in surface O3 regionally or at background sites 
(1.5–2.2 ppb, for emissions reductions of 20–45%, respectively (Potts 
et al., 2021). 

Health benefits associated with air quality improvements consistent 
with the first lockdown period translate to marginal population level 
mortality benefits across the city due to the relatively small population 
living in roadside locations, but may deliver major economic savings, 
estimated here at £1.16–2.52 million. There are many reasons to 
consider that our economic estimates are likely to be an underestimate. 
Firstly, we consider residential locations only and therefore do not 
capture benefits arising from reduced roadside NO2 exposure experi
enced during commuting and leisure activities. We do not include 
additional morbidity benefits of reduced air pollutant exposure, 
including avoided primary care consultations and emergency hospital 
admissions. Further it is beyond the scope of the present study to 

Table 2 
Attributable mortality, lost life years and value of life years lost (VOLYs) attributable to NO2 annual mean concentrations consistent with lockdown 1 scenario, by 
population exposure zone status (near roadside/far roadside/urban background).   

NO2 annual mean concentrationa 

(2019) μg m− 3 
City Population 
(2019) 

Annual deaths attributable to NO2 

exposureb,c 

N (95% CI) 

Associated total lost life 
yearsd 

N (95% CI) 

Value of life years 
loste 

£M (95% CI) 

City 
Baseline scenario 29.7 152000 37 (23–50) 393.3 (248.4–538.2) 15.15 (9.57–20.74) 
Lockdown 1 
Scenario 

26.1 152000 32 (20–44) 345.6 (218.3–473.0) 13.32 (8.41–18.22) 

Zone 1: Near Roadside 
Baseline scenario 31.7 11961 3 (2–4) 32.9 (20.8–45.1) 1.26 (0.80–1.74) 
Lockdown 1 
scenario 

24.7 11961 2 (2–3) 25.6 (16.2–35.1) 0.98 (0.62–1.35) 

Zone 2: Far roadside 
Baseline scenario 21.7 14072 2 (2–3) 26.5 (16.7–36.3) 1.02 (0.65–1.40) 
Lockdown 1 
scenario 

19.313 14072 2 (1–3) 23.6 (14.9–32.3) 0.90 (0.57–1.24) 

Zone 3: Urban background 
Baseline scenario 20 126467 21 (13–28) 219.7 (138.7–300.6) 8.46 (5.3–11.6) 
Lockdown 1 
scenario 

19.6 126467 20 (13–28) 215.3 (135.9–294.6) 8.29 (5.2–11.3)  

a Mean value across zone-specific NO2 monitoring locations (2019). 
b Reduced NO2 mortality coefficient: 1.0095 (1.006–1.013) per 10 μg m− 3 NO2. 
c Mortality rate: 0.00857 (ONS, 2019). 
d Life-years lost multiplier: 10.667. 
e Value of life years lost: £38,527 (updated from 2004 costs). 
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consider broader benefits associated with traffic reduction such as 
reduced road traffic injuries, increased physical activity levels, reduced 
noise pollution, improved mental health and quality of life. Finally, the 
VOLY approach to costing is typically conservative; the UK government 
(DfT, 2021) adopts a value of £1.56 million for the Value of a Statistical 
Life (VSL) (£1.62 million in 2019 prices) which would generate eco
nomic savings of approximately 4–5 times those reported here. 

Strengths of our methodological approach include use of four com
plete years of data for detrending analyses, therefore impacts arising 
from specific weather-related events will be small. In comparison to 
previous studies (Jephcote et al., 2020; Lee et al., 2020; Potts et al., 
2021; Ropkins and Tate, 2021), this study applied a robust methodology 
with good performance to estimate air quality changes attributable to 
the lockdown, which ruled out the impacts of meteorology and 
pre-existing emission changes due to long-term trends. In addition, the 
availability of vehicle data and emission estimates provide information 
upon transport related activity occurring at the transition stages into 
respective lockdown periods. 

Overall, NO2 concentrations in Oxford have reduced year-on-year 
over the last decade with the transport sector identified as responsible 
for 68% of total NO2 emissions (Carslaw, 2020; Abreu, 2021b; Ricardo, 
2020). Air quality improvements prior to the COVID-19 pandemic were 
attributed to introduction of bus-based emissions restrictions from 2014 
and cleaner vehicle fleet evolution, reflecting national trends. The city is 
also recognised as the first in the UK to formally adopt a NO2 annual 
mean objective of 30 μg m− 3. Modelling suggests this target will be 
achieved if all measures within Oxford City Council’s most recent AQAP 
are delivered, including 30 priority actions to be undertaken by the local 
authority and partners (Abreu, 2021b). Key planned interventions 
include emissions control restrictions (e.g., a central ZEZ), proposals for 
a series of point filters for private motor vehicles (bus gates) and 
implementation of a Workplace Parking Levy (WPL). Our current find
ings provide insights regarding the potential impacts of transport policy 
measures of relevance to other similar sized UK cities; traffic reduction 
consistent with the first lockdown would achieve 34 μg m− 3 annual 
mean (roadside) NO2 concentration, with minimal change at urban 
background sites. Therefore, further targeted emissions control mea
sures will be necessary to achieve local target compliance and to deliver 
major public health gains, notably given the limited city population 
residing at roadside locations. We also note the historic Oxford High 
Street is a location where passenger vehicles are already restricted and is 
a major central bus route, and therefore emissions contributions at this 
location are likely to be proportionately higher from public transport 
sources compared to other UK cities. Further, traffic reduction had 
minimal impact upon PM concentrations, with indication of PM10 in
crease during the second lockdown, suggesting additional measures 
tackling a wider range of emissions sources will be necessary to reduce 
PM exposure among the city population. Overall, our findings strongly 
reinforce the need for a holistic air quality strategy addressing a broad 
range of pollutants. 

It is also evident from our analyses that failure to adequately account 
for the respective influences of meteorology and seasonal trends is likely 
to overestimate air quality benefits arising from emergency public 
health measures implemented during lockdown periods. The method
ology described may also be applied to evaluate future emissions trends 
and relevant interventions, enabling robust scientific assessment of 
changes attributable to transport and air quality policy measures in this 
context. 

5. Conclusions 

Emissions changes arising from altered patterns of economic activity 
and travel behaviours during the COVID-19 national lockdown periods 
have led to complex changes in air pollutant concentrations in this city 
centre setting. Our novel analysis indicates that observed NO2 re
ductions of 38% at roadside and 17% at urban background locations 

reflect actual emissions reductions of 22% and 2% respectively. This 
work emphasises the need for rigorous evaluation of urban air quality 
interventions in the context of meteorological influences and long-term 
trends. Achieving a 70% reduction in city centre traffic volume would 
deliver some public health benefits; however PM concentrations would 
not reduce and targeted emissions control measures may be more 
effective. Further research focusing upon population health, economic 
and climate co-benefits arising from such interventions would be valu
able to inform transport policy decisions in similar small and medium 
sized UK cities. 
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